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This paper is concerned with the technique of identifying a non-linear electromagnetic
system experimentally based on the principle of harmonic balance and the curve fitting
method. The system under investigation is a symmetric rotor suspended by a spring device
and excited by an electromagnet of a magnetic bearing. Particular emphases are placed on
the identifiability of such a technique for this system and how to improve the modelling
accuracy. The traditional identification technique is modified in order to successfully
identify this system possessing highly non-linear characteristics. The resulting non-linear
model has been proven to be in agreement with the experimental data. The knowledge
gained from these studies are presented and discussed thoroughly.
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1. INTRODUCTION

In industrial applications, magnetic bearings are superior to conventional bearings in
performances such as high rotation speed, no friction, and high precision. When used, one
expects that the rotor suspended by the magnetic bearing rotates stably through the
rotating speeds. This requires a closed loop control to stabilize the system and to eliminate
vibrations due to disturbed forces.

The characteristics of magnetic bearings are inherently non-linear due to the
non-linearities of the electromagnetic forces. In a linear case study, the electromagnetic
force is linearized about the operating point and considered to be a linear function of
currents and air gaps. However, the linear relationship only holds locally. In practice, the
electromagnetic forces are non-linear. When higher magnetic flux densities are used for
reducing the weight and size of magnetic bearing or when a considerably large deviation
of a spinned rotor is unavoidable due to large unbalance forces, the non-linear
characteristics become quite significant. To accurately control or predict the performance
of the system, the effects of these non-linearities should be taken into consideration.
Generally, analytical and numerical techniques can be applied for this purpose. Numerical
techniques such as the FEM model [1] may agree well with experiments if the mesh division
is reasonable, but it takes much effort and calculation. Likewise, analytical techniques
require the solving of the full set of Maxwell equations coupled with the kinetic equation
for the rotor [2], and so are also quite difficult and complicated. One of the motivations
for the present study is to consider whether the analysis can be simplified by applying a
simple identification technique to search for the simplest mathematical model that can
capture the dynamic behaviours of an electromagnetic system.
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The problem of system identification is generally referred to as the determination of a
mathematical model for a system or a process by observing its input–output relations.
There are a number of well-known parameter identification techniques that have been
successfully applied to the many cases. They include the method of maximum likelihood
[3], least squares [4], and instrumental variable [5], etc. But most of the techniques
developed so far cannot be applied to non-linear systems. Recently, the identification of
a non-linear vibratory system is being further developed, and several techniques have been
proposed in references [6–10]. Yasuda et al. [11] applied the harmonic balance principle
to identify a multi-degree-of-freedom system with smooth non-linearity. Following closely,
Yasuda et al. [12] extended this technique to systems containing non-smooth non-linearity.
In the above studies, the identification techniques were proven to be applicable to their
numerical examples, but experimental works have not been carried out.

As for the experimental identification, many efforts have been made, for example, the
work studied by Wang et al. [13], Zhang et al. [14] and Arumugam et al. [15]. But those
studies have only dealt with the problems of identifying linear experimental systems. Yi
et al. [16] have proposed an identification method based on a sliding observer and a least
square method. This method has been used to accurately identify the parameters of their
half car suspension test rig. Zhang et al. [17] have also studied the problem of identification
for a non-linear system. They developed the frequency domain method for estimating the
unknown parameters in linear-in-the-parameter and non-linear systems. Their application
for squeeze-film dampers has also proven to be very successful. But the method is only
able to be used in smaller excited amplitudes and the excited frequencies are limited in a
narrow-band. In these two experimental studies, the non-linear terms should be derived
from theoretical calculation and values of parameters were unknown and needed to be
identified.

Since the actual form of non-linear magnetic force may not be easily derived in practice,
in this paper, the non-linear magnetic force is expressed by the form of polynomial, as in
references [11, 18]. In practice, however, how many terms and how high the order should
be set in the polynomial to fit a physical system is still a difficult decision. Theoretically,
the technique described by references [11, 18] can allow one to assume a polynomial
containing many homogenous non-linear terms up to a certain higher order and the
calculations will lead the coefficients of all unnecessary terms to zero. However, since the
data obtained by experiment may contain noise, the resulting coefficients of the
unnecessary terms may not go to zero. Furthermore, errors may be introduced because
too many terms are used in the calculations. Under this situation, the application of curve
fitting will be of assistance to obtain the non-linear model. However, since the magnetic
force is a function of both the air gap and the current, it is difficult to obtain a surface
equation representing the magnetic force by merely applying the curve fitting. Thus, one
first applies the curve fitting to fit the experimental data for fixed air gap and fixed current,
which will result in the function representing the magnetic force that is a function of both
the air gap and the current. These functions are combined and the harmonic balance
method is applied to obtain the approximating non-linear equation for the magnetic force.
The resulting model will be able to predict the dynamic behaviour quite well.

2. EXPERIMENTAL EQUIPMENT AND RESULTS

The magnetic bearing system shown in Figure 1 is chosen here for the analysis. The
mechanical construction consists of an unload symmetric rotor which is attached to a
flexible coupler at one end and supported by four radial electromagnets at the other end.
This is a typical example of magnetic bearing systems. To simplify the analysis, the rotor
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is kept unrotated and only one of the four electromagnets is used to apply harmonic force
to the rotor to investigate the effects of its non-linear characteristics. Although this system
looks simple, it possesses rich dynamics as will be seen later.

Two eddy current-type displacement sensors with sensitivity 1·0 V/mm are placed at the
disk end. Two current transducers with sensitivity 1·0 V/A are used to measure the current
in the electromagnetic coil. The input to the power amplifier is the forcing voltage
(A0 sin vt) generated by a programmable function generator to act as an identification
input signal.

In performing the experiment (see Figure 2(a)), a spring set and a bias voltage are
applied to levitate the rotor at the centre position and one of the four electromagnets is
used to excite the system by a series of harmonic forces. The output signals measured from
displacement sensors and current sensors together with the forcing voltage are then
recorded simultaneously by a personal computer with sampling time at 0·0001 s. Figure
2(b) shows the overall block diagram for this system.

In order to examine the steady state behaviour of the system, it is useful to plot the
frequency response diagram showing how the maximum displacement amplitude (ym ) of
the rotor will vary with various forcing frequency (v). It is obtained by superimposing
sinusoidal inputs on the bias voltage for our system. Figure 3 shows the frequency
responses of the rotor displacement for input amplitude A0 =3·0 V by decreasing forcing
frequency (v) from 80 to 34·4 Hz. If the system starts at high frequency, and then one

Figure 1. The magnetic bearing system (unit: mm).
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Figure 2. (a) The experimental set-up of the electromagnetic system. (b) An overall block diagram of this
system.

slowly decreases the forcing frequency, there is an increase in amplitude along the resonant
part of the response curve. The smooth variation of amplitude and frequency continues
until near v=37·6 Hz, where the first period-doubling bifurcation occurs. In the
period-doubling bifurcations, one starts with a system with a fundamental period motion.
Then as experimental parameter (v) is varied, the motion undergoes a bifurcation or
change to a periodic motion with twice the period of the original oscillation. In other
words, the motion of period T(T=2p/v) loses its stability and becomes a period 2T
subharmonic oscillation. The stationary transitions from T to 2T, from 2T to 4T, . . . , etc.
branches at the cascade bifurcation. Due to the fact that the identified system of our model
is a soft-spring type system, usually the period doubling bifurcation phenomenon occurs
in the neighbourhood of the resonant region for the soft-spring type system. Beyond this
point, the vibrating amplitude of the rotor and the coil current grow sharply. As the forcing
frequency continues to decrease, the trajectory continues to experience period-doubling
bifurcations which eventually results in a chaotic motion; it was observed that the rotor
strikes the electromagnet, i.e., the system is blown up. The bifurcation sequence is easily
seen in the time series shown in Figure 4, which are recorded by a digital oscilloscope
(Fluke 97) and the bias values have been removed. The spectrum, as shown in Figure 5,
also shows the bifurcations with the presence of new frequency components at v/2, 3v/2,
5v/2, etc.
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It was observed that the dynamics of the system are fairly complex due to non-linearities.
The mathematical model would be necessary for designing conventional controllers;
otherwise the system performance may be acceptable only for some specific conditions due
to the fact that the controller gains are usually obtained through trial and error and are
only effective locally.

3. IDENTIFICATION METHOD

In this section, the identification method proposed by Yasuda et al. [11] is described
briefly and further calculation details can be obtained from reference [11]. The basic
procedures of this technique are as follows. (1) Deduce an appropriate mathematical model
that can capture the dynamic characteristics of the physical system to be identified. The
unknown non-linear terms are approximated by an appropriate form of polynomials. (2)
Persistently excite the system by choosing a series of an appropriate periodic force with
various frequencies. At the same time, record this periodic force input and the
corresponding period steady state responses simultaneously. (3) Express the input force
term and each term in the equation of motion including the non-linear terms in Fouries
series. (4) Apply the principle of harmonic balance to yield

[A]{S}= {Q}, (1)

where the matrix [A] is known and is constructed by the Fourier coefficients of all the terms
in the equation of motion excluding that of the input force, vector {S} contains the
unknown coefficients of the equation of motion to be determined, and vector {Q} is
constructed by Fourier coefficients of the input force. Equation (1) can be solved using
the weighted least-square method to obtain

{S}=([A]T[W][A]−1)[A]T[W]{Q}, (2)

where the matrix [W] is the weighting matrix used to improve accuracy and [A]T represents
the transpose of matrix [A].

Figure 3. Bifurcation diagram obtained by the experiment (w w w).
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4. SYSTEM IDENTIFICATIONS

The motion of the rotor is governed by

M
d2y
dt2 =−C

dy
dt

−Ky+Fm (i, y)+D, (3)

where y is the oscillating displacement of the rotor about a reference point. Parameters
C, K, and D denote the equivalent damping, stiffness and dc gain of the electromechanical
system, respectively. Fm , the magnetic force of the electromagnet, is a function of the
current and the air gap. It is noted that the term of dc gain is generated due to the origin
of the chosen co-ordinate which may be different from the actual equilibrium point. In
general, the calculation of this force is based on the field energy. If we neglect the iron
losses and assume the electromagnet to be unsaturated, theoretically, this force is
quadratically dependent on the current and inversely quadratically dependent on the air

Figure 4. (a)–(d). Caption opposite
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Figure 4. Development of time histories in transition to chaos at decreasing driving frequency. (a)
v=37·8 Hz; (b) v=37·6 Hz; (c) v=36·6 Hz; (d) v=35·6 Hz; (e) v=35·2 Hz.

gap. However, if the iron of the electromagnet is operated beyond or close to saturation
point with high flux densities (as in our case), one must consider the non-linear
characteristics of the magnetization curve. Then, to determine exactly the motion of the
rotor in the magnetic field requires the simultaneous solution to the full set of Maxwell
equations coupled with the kinetic equation for the rotor. It is indeed a very difficult task,
Thus, the non-linear magnetic force is approximated by an approximate form of
polynomial in our study.

The equation of motion describing the response of current (i) is obtained from a voltage
balance in the electromagnetic circuit. The disturbance voltage, A0 sin vt, is balanced by
the voltage drop due to the resistance and the inductive reactance of the coil. The induced
voltage in the coil is proportional to the number of turns (n) and the time rate of change
of flux (F), i.e.,

n
dF(i, y)

dt
+Ri=FF +Ri=KAA0 sin vt, (4)

where R is resistance of the coil and KA (=2·254) is the gain of the power amplifier. FF

represents the voltage drop due to the inductance and the back emf, which is a non-linear
function of both the air gap and the current.

In the present work, the authors do not intend to determine exactly the form of FF and
Fm . Instead of following the general approaches, the analysis is simplified by applying the
identification technique to find the simplest forms for FF and Fm that can capture the
dynamic behaviours of the physical system, especially in the neighbourhood of the
bifurcation point shown in the experimental data.
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Figure 5. Frequency spectra evolutions of the experimental data. (a) The period-one solution; (b) the
period-two solution; (c) the period-four solution; (d) the chaos motion.

In what follows, three cases are illustrated, from a simpler model to a complicated one.
The experimental time series for A0 =3·0 V and v ranging from 38 to 80 Hz are employed
to carry out the identification calculations with the assumption that up to the third order
terms are retained up in the Fourier series expansion. In proceeding with the calculations,
the weighting matrix in equation (2) is used to weight the data near the bifurcation points
(v in the ranges of 38–41·5 Hz) in order that the identified model can predict the
bifurcation sequences more accurately.

4.1.  

In this simple case, the induced voltage FF is approximated by FF =L0(di/dt), which
implies that the inductance of the magnetic coil is treated as a constant value (L0). The
expression for the magnetic force which is a function of both the coil current and the air
gap is approximated by a polynomial. Under these assumptions, equations (3) and (4) can
be rewritten as

d2y
dt2 + a1

dy
dt

+ a2y+ a3y2 + a3y3 + a5i+ a6i2 + a7i3 + a0 =0, (5)

L0
di
dt

+ iR=KAA0 sin vt, (6)

where i is the oscillating current about a biased current, and y is the oscillating
displacement of the rotor about a reference point. Using the experimental data for
A0 =3·0 V, the identification technique mentioned in section 3 is carried out to determine
the coefficients L0, R and a0–7 in equations (5) and (6), by applying the harmonic balance
and the weighted least square method. The identified results are listed in Table 1. It is noted
that if the order of magnitude of the parameters are significantly different from each other,
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T 1

Identified results for case I

Identified values

a1 41·418702
a2 2·2779564×104

a3 3·661201×104

a4 −0·3566263×106

a5 0·0622018×105

a6 −0·2042933×105

a7 2·734417×104

a0 0·25324×104

L0 0·0264988
R 9·7969308

the smallest parameter may have a larger percentage error due to the characteristics of the
least square method. Under this situation, the concept of scaling can be applied to solve
the problem caused by orders of magnitude.

Numerical simulations of equations (5) and (6) are performed by substituting the
coefficients (Table 1) into equations (5) and (6) and letting A0 =3·0 V. The resulting steady
state responses in the range of 34–80 Hz along with the experimental data are presented
in Figure 6. It is shown that the steady state displacement amplitude of this simple model
can approximately follow the experimental data, with reasonable accuracy. However, the
first period-doubling bifurcation appears near 34·1 Hz and the solution blows up when the
frequency is decreased beyond 34 Hz. The period-doubling cascade and chaotic motion
seen in the experimental data are absent in this model. This might be due to the fact that
the assumption of the inductance (L0) as a constant value introduces error in the estimation
of inductance. Since the relationships between flux density (B) and magnetic field (H), and
between Fm and i, are non-linear, the inductance will also depend on the operating point
of the B–H diagram. This fact can be verified by drawing the inductance–current curve
experimentally. The key work is to calculate the inductance at various bias voltages from

Figure 6. Comparison of bifurcation diagram obtained by experiment (www) and simulation (WWW) for
case I.
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Figure 7. Inductance corresponding to various bias currents: experimental data (WWW) compared to the data
estimated from case I (––).

0·2 to 6 V in steps of 0·2 V with the air gap of the rotor fixed at 0·44 mm. Then 26 small
amplitude sinusoidal inputs with different frequencies (between 70 and 80 Hz) are
superimposed on each bias voltage and the dynamic steady state response of coil current
as well as the sinusoidal input are recorded simultaneously. Figure 7 shows the values of
inductance corresponding to various bias voltages obtained by using these data and
applying the identification technique mentioned above. It can be seen that the value of
inductance does not remain constant. Rather, it varies as a function of the net coil current
(I). If the coil current is kept within the regions IQ 0·4 A and Iq 0·5 A, then the value
of inductance can be approximated to a constant value (average 0·254 H for IQ 0·4 A and
0·0167 H for Iq 0·5 A). However, the bias of the coil current in our case is 0·685 A and
the oscillations (i) will inevitably go back and forth between these two regions. The
estimation of inductance for this case results in L0 =0·0264988 H. This value is acceptable
for higher forcing frequency since the current i will be small. However, when the current
i becomes larger on decreasing the forcing frequency, the estimated value of L0 becomes
too small compared to that of the physical system. This may be the primary reason for
our observations shown in Figure 7 where the simple model introduces a relatively large
error in amplitude when the current i gets larger.

4.2.  

Once the characteristics of the inductance are known, techniques such as curve fitting
can be applied to obtain a suitable form which will fit the experimental data perfectly. In
this way, the simplest form of FF in equation (4) to match the characteristics of the
electromagnet is obtained as

FF =L1(I0 + i)−1 di
dt

, (7)

where I0 is the biased current measured directly from the average of experimental current
time series and i is the oscillating current about I0. Then the dynamic equations used to
fit our physical system become.
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d2y
dt2 + a1

dy
dt

+ a2y+ a3y2 + a4y3 + a5i+ a6i2 + a7i3 + a0 =0, (8)

L1(I0 + i)−1 di
dt

+ iR=KAA0 sin vt, (9)

Equation (8) is obtained in the same way as equation (5).
By using equations (8) and (9), similar identification calculations as in case I are

performed. These results are displayed in Table 2. Using these coefficients, the frequency
responses of equations (8) and (9) can be calculated and are shown by fine lines in Figure
8. From this figure, the steady state displacement amplitude of this model is shown to track
the experimental data more closely than that in case I. The first period-doubling
bifurcation is seen to occur at about 41·8 Hz and the period-doubling cascade and chaotic
motion are shown to appear. But, the deviation of the bifurcation point of period-doubling
bifurcation from that of the experimental data is quite notable (with relative error of
11·7%). Thus this model is still unacceptable.

Since the bifurcating behaviours belong to the characteristics of a highly non-linear
system, the way of approximating the magnetic force in this simple form of polynomials
may be inadequate for the physical system. To confirm this, a series of experiments were
performed to find the relations among magnetic force, current, and displacement. Figure 9
illustrates the apparatus for this experiment. An electromagnet used in our physical
system was fixed on a heavy seat and a rotor in short length was fixed on the dynamometer
with a specified air gap between the electromagnet. The attractive forces sensing from the
dynamometer (KISTLER 9257B) were recorded by the personal computer (PC) via a
charge amplifier (KISTLER 5019A). Since the electromagnetic force was a function of
both the air gap and the coil current, the test was performed by gradually increasing
the current from zero to 2·0 A in steps of 0·25 A at various air gaps. The supplying
currents were fed from a power amplifier and were metered previously by the PC. Since
the nominal air gap of the control system was at 0·44 mm, five values of air gaps were
selected in the tests, i.e., 0·3–0·5 mm in steps of 0·05 mm. At each stage, the histories of
the current, air gap, and the magnetic force were recorded simultaneously. The
experimental results are shown in Figure 10. From the diagram, it can be seen that the
magnetic force is saturated when the coil current is increased beyond 0·3 A for various air
gaps. As the coil current passes through this point, the magnetic force is quite insensitive
to the increase of the coil current. It shows that the current-force relation of the
electromagnet possesses highly non-linear characteristics. In our physical system, the

T 2

Identified results for case II

Identified values

a1 41·418702
a2 2·2779564×104

a3 3·661201×104

a4 −0·356623×106

a5 0·0622018×105

a6 −0·2042933×105

a7 2·734417×104

a0 0·25324×104

L1 0·018096
R 9·7922279
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Figure 8. Comparison of bifurcation diagram obtained by experiment (www) and simulation for case II
(WWW).

oepration point of coil current is biased at 0·685 A to levitate the rotor to the equilibrium
position (with the nominal air gap 0.44 mm). When the oscillating amplitude of the coil
current is increased, the magnetic force will be saturated such that the system exhibits rich
dynamics.

4.3.  

Having the experimental data for magnetic force at hand, the curve fitting procedures
were performed to obtain two polynomials representing the force–current (fixed air gap)
and force–air (fixed current) relations as follows.

F1(I)=C1I2/3 +C2I4/3 +C3I6/3 +C0, with air gap fixed, (10)

F2(ȳ)=D1ȳ+D2ȳ2 +D3ȳ3 +D0, with coil current fixed, (11)

where I is the total current including the biased current and the oscillating current input
to the coil, and ȳ is the air gap. Figure 11 shows the results of the curve fitting. In these
figures, the non-linear terms in equations (10) and (11) can reasonably fit the experimental
data. It is worth noting that although the addition of a larger number of parameters to
describe the magnetic force may improve the accuracy of the approximation, the stochastic

Figure 9. The apparatus for the magnetic force measurement.
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Figure 10. The magnetic force–current characteristics for various air gap: (a) 0·30 mm; (b) 0·40 mm; (c)
0·45 mm; (d) 0·50 mm.

error which is proportional to the number of parameters may increase accordingly in the
subsquent identification calculations. Also note that since the magnetic force is a function
of both the air gap and coil current when the rotor is in motion, the coefficients obtained
by curve fitting cannot be substituted directly into equation (3) due to the fact that they
are effective for fixed air gap or fixed current. Therefore, the curve fitting technique applied
here is only to find the adequate non-linear terms to facilitate the identification.

Equations (10) and (11) are combined, with the current biased at operating point to
represent the magnetic force (Fm (i, y)), so that equation (3) becomes

d2y
dt2 + b1

dy
dt

+ b2y+ b3y2 + b4y3 + b5(I0 + i)6/3

+b6(I0 + i)2/3 + b7(I0 + i)4/3 + b0 =0, (12)

L1(I0 + i)−1 di
dt

+ iR=KAA0 sin vt, (13)

where I0 is the biased current calculated directly from the average of experimental current
time series, and i is the oscillating current from I0. Similarly, by using the experimental
data and the harmonic balance method as in case II, the necessary coefficients (see Table
3) for equations (12) and (13) are obtained. Incorporating these results into equations (12)
and (13) and letting A0 =3·0 V, numerical simulations are carried out to obtain the
simulated frequency response and to compare with the experimental data as shown in
Figure 12. With this figure, it is first noticed that the steady state frequency response curve
of this model is almost the same as that in case II. Second, as forcing frequency (v) is
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decreased, a cascade of period-doubling bifurcations are clearly seen which lead the
system to chaos. The first period-doubling bifurcation point (about 39 Hz) is rather
good in agreement with the experimental data (about 37·6 Hz), with relative error at
about 3·7%.

In order to verify that the non-linear model of case III can capture the characteristic
of the real system, the non-linear equations (12) and (13) are simulated to obtain two
bifurcation curves, b1 and b2, and compared with the bifurcation curves, a1 and a2, which
are obtained from experimental data. The results are shown in Figure 13. Similarly, the
bifurcation curves c1 and c2 for case II obtained by simulating equations (8) and (9) are
also shown in Figure 13 for comparison. In this figure, lines a1 and a2 are the bifurcation
points of period-four and period-two, respectively, for various forcing amplitude (A0)
measured from the experimental data. If one starts at a high frequency and then decreases

Figure 11. (a) Comparison of the magnetic force–current characteristics obtained by experiment and curve
fitting for various air gaps. - - - , Curve fitting (equation (8)) with air gap=0·40 mm; ––, curve fitting (equation
(8)) with air gap=0·30 mm; w w , experiment with air gap=0·30 mm; WW, experiment with air
gap=0·40 mm. (b) Comparison of the magnetic force–air gap characteristics obtained by experiment and curve
fitting for various currents. - - - , Curve fitting (equation (9)) with coil current=1·1 A; ––, curve fitting (equation
(9)) with coil current=1·7 A; w w , experiment with coil current=1·7 A; WW, experiment with coil
current=1·1 A.
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T 3

Identified results for case III

Identified values

b1 43·843782
b2 1·7461747×104

b3 3·969473×104

b4 −16·80843×104

b5 3·3106×104

b6 10·505×104

b7 −9·98479×104

b0 −3·443392×104

L1 0·018096
R 9·7922279

the forcing frequency slowly until it reaches line a2 (in Figure 13) where a period-two
bifurcation occurs, the T-period orbit loses stability and bifurcates into a period 2T orbit.
Similarly, when the forcing frequency is decreased continuously until it meets line a1 (in
Figure 13) where a period-four bifurcation occurs, the 2T-period orbit loses stability and
bifurcates into a period 4T orbit. In other words, a period-two orbit exists in the region
between line a1 and line a2. Line b2 (period-two bifurcation curve) and line b1 (period-four
bifurcation curve) are obtained from case III. Line c2 (period-two) bifurcation curve and
line c1 (period-four bifurcation curve) are obtained from case II. Clearly, the curves for
period-two and period-four and thus chaotic motions predicted by case III are more in
agreement with the experimental data than those by case II. Here the limited error existing
in the figure can be considered to be caused by the approximations of the mathematical
model.

In order to investigate the effectiveness and the relative contribution of the various terms
of the polynomial form for the magnetic force applied in cases I, II and III, the
current–force curve represented by this polynomial form is plotted to compare with that

Figure 12. Comparison of bifurcation diagram obtained by experiment (www) and simulation for case III
(WWW).
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Figure 13. Period doubling bifurcation regions and their boundaries for various cases in the A0 −v space in
decreasing driving frequency. Line a1: period four bifurcation curve obtained by experiment; line b1: period four
bifurcation curve estimated from case III; line c1: period four bifurcation curve estimated from case II; line a2:
period two bifurcation curve obtained by experiment; line b2: period two bifurcation curve estimated from case
III; line c2: period two bifurcation curve estimated from case II.

of the experimental data. Figure 14(a) shows this diagram, where the magnetic forces have
been normalized. It is clearly seen that the simple polynomial form (as case II) of the
magnetic force matches the experimental data only in the vicinity of the operating point
(I0 =0·685 A). As the coil current goes far away from the bias current, the simple
polynomial form is shown to deviate from the experimental data considerably. This may
be the reason why equations (8) and (9) in case II fail to wholly capture the non-linear
characteristics of our physical system. Figure 14(b) shows the comparison of normalized
magnetic forces obtained experimentally and estimated by the various non-linear terms of
case III. It can be seen that the magnetic force predicted by case III is more satisfactory.
Thus, it can be concluded that this model successfully predicts the dynamic characteristics
of the physical system.

In practice, the measured experimental data may contain a certain level of noise
which complicates the identificating work. In order to study the effectiveness of this
identification technique for signals containing noise, the random noise as shown in
Figure 15(a) is added to the experimental time series for A0 =3·0 V with v ranging
from 38 to 80 Hz. By applying these data and the identification procedure as before,
the coefficients for equations (10) and (11) are obtained. Substituting the results into
equations (10) and (11) and letting A0 =3·0 V, the steady state frequency response is
obtained, as shown in Figure 15(b). From this figure, we find that the steady state
frequency response is almost the same as that of the experimental data without random
noise. And the first period-doubling bifurcation point (about 39·5 Hz) is found to be in
rather good agreement with the experimental data containing no random noise (about
39 Hz). This is due to using the ‘‘Discrete Fourier Transform’’ method in the identification
calculations. The high-frequency noise will be filtered during the calculations. Therefore,
this identification technique has proven to be effective in experimental data with small
disturbed noise.
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Figure 14. (a) Comparison of normalized force–current curves of the electromagnet obtained by experiment and
estimation from case II: ——, experiment; — — —, no non-linear terms; — - — -, non-linear terms: y2, i2;
—--—--—, non-linear terms: y2, y3, i2, i3. (b) Comparison of normalized force–current curves of the electromagnet
obtained by experiment and estimation from case III: ——, experiment, — — —, non-linear terms: y2, y3, i2;
—-—-—, non-linear terms: y2, y3, i2, i2/3; : —--—--—, non-linear terms: y2, y3, i2, i2/3, i4/3.

5. CONCLUSIONS AND REMARKS

In this paper, the curve fitting method was applied to fit the experimental data for fixed
air gap and fixed coil current. The resulting functions, which are a function of both the
air gap and the current, are combined to acquire the necessary non-linear terms to
represent the non-linear magnetic force. Finally, the harmonic balance procedures and
weighted least square method are performed to obtain the coefficients for these non-linear
terms. With this modification, the proposed identification technique is proven to be more
feasible in experiment.

From the experimental data, it was observed that this system contains rich non-linear
phenomena. What mechanisms lead to such dynamics deserves to be further studied. This
should be carried out by using the non-linear model obtained in case III and employing
the advanced non-linear theory. Moreover, in the present study, only the dynamics of the
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Figure 15. (a) Random noise. (b) Bifurcation diagram obtain by case III with random noise.

system in the vertical direction is investigated. When the rotor is rotated, the coupling
effects between the vertical and horizontal directions, especially at high rotating speed and
a large disturbed amplitude, may become significant. In such a situation, the following
should be noted in identification calculations. (1) All the magnetic forces of the
electromagnet in the assuming model should be a function of the current and the air gaps
of both vertical and horizontal directions. (2) The gyroscopic effects associated with the
spinning rotor should be considered. (3) The identification procedure for this situation will
be the same as that applied in this paper, but will be more complicated. Identifying a model
to capture the dynamics of the system under this situation is our forthcoming work.
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